
Breaking Into CTFs

@ikuamike

Agenda
Introduction
What is a CTF
Why play a CTF
Types of CTFs
CTF Categories
Conclusion

1.
2.
3.
4.
5.
6.

@ikuamike

Introduction
Michael Ikua - Lead Penetration Tester, Silensec
 - CTF Player @fr334aks

Kelvin Njau - Security Consultant, Silensec
 - CTF Player @fr334aks
 - @k0imet_

Trevor Saudi - Technical Content Creator, CYBERRANGES
 - CTF Player @fr334aks
 - @trevorsaudi @ikuamike

What is a CTF
A Capture The Flag competition is a cybersecurity contest
where individuals/teams tackle challenges for points.

In most cases the one with the most points at the end wins, in
other cases you get a position on a long standing leaderboard.

@ikuamike

Why play a CTF
For hands on practice of your cybersecurity skills
To get exposed to new areas of interest in cybersecurity
For fun, some challenges pose fun puzzles to solve
To win prizes/giveaways
To network with different professionals/enthusiasts
To boost your resume as a means to get a start in the cyber
security industry

1.
2.
3.
4.
5.
6.

@ikuamike

Type of CTF Competitions
Jeopardy
Boot2Root
Attack and Defend
Wargames
CyberRanges

1.
2.
3.
4.
5.

@ikuamike

Jeopardy
This is the most common type of CTF competition where you compete
in different categories to capture points. Mainly revolves around
conference events or meetups.

Platforms:
 - Just follow CTFtime (ctftime.org)
 - HackTheBox (ctf.hackthebox.com)
 - CYBERRANGES (app.cyberranges.com)
 - CyberSpaceKenya (ctfroom.com)

@ikuamike

Boot2Root
This type is mostly pentesting focused where you have a stand-
alone victim machine and you're supposed to perform an attack and
gain root privileges to complete the challenge.

Platforms:
 - HackTheBox Machines (app.hackthebox.eu/machines)
 - Vulnhub Machines (vulnhub.com)
 - TryHackMe Rooms (tryhackme.com)
 - Offensive Security Proving Grounds
 - etc... @ikuamike

Attack and Defend
You compete by attacking opponents infrastructure and simultaneously
defend your own infrastructure.

Platforms:
 - HackTheBox Battlegrounds (app.hackthebox.eu/battlegrounds/lobby)
 - TryHackMe King of the hill (tryhackme.com/games/koth)
 - Some CTF Events

@ikuamike

Wargames
These are progressive challenges where you get the key/password to
the next challenge by solving the current.

Platforms:
 - Overthewire (overthewire.org/wargames/)
 - Underthewire (underthewire.tech/wargames)

@ikuamike

CyberRanges
These are challenges with near realistic environments with
interconnected machines that put a more real world spin to ctfs.

Platforms:
 - CYBERRANGES (app.cyberranges.com)
 - HackTheBox Pro labs (app.hackthebox.eu/prolabs)
 - TryHackme Networks (tryhackme.com/hacktivities)
 - Offensive Security OSCP labs

@ikuamike

CTF Categories
Web Application Security
Mobile Application Security
Forensics
Steganography
Reverse Engineering
Binary Exploitation
Miscellaneous

1.
2.
3.
4.
5.
6.
7.

@ikuamike

Web Application Security

@ikuamike

Introduction

A proper foundational knowledge on the protocols used in web
applications as well as the different technology stacks is
important when figuring out web application security.

OWASP
Open Web Application Security Project is an open community
dedicated to enabling organizations to develop, purchase, and
maintain applications and APIs that can be trusted.

@ikuamike

OWASP Top 10

https://www.owasptopten.org/the-release-of-the-owasp-top-10-2021

Web CTF Challenge

@ikuamike

https://ctfroom.com
Vault: HTML & PHP Runs the Web

HTTP Basics Refresher

@ikuamike

HTTP Request Message Format

Method, Resource, HTTP Version​​
Zero or more header lines​​
Blank line​​
Optional Message Body​​

GET / HTTP 1.1​​
Host: 127.0.0.1​​
User-Agent: curl/7.68.0​​
Accept: */*​​

HTTP Basics Refresher

@ikuamike

HTTP Request Methods

GET - Request a resource or information​​
HEAD - Like GET but only for the header and not the information​​
POST - Sends information to the server for a certain action​
OPTIONS - Asks the server what methods it supports​​

HTTP Basics Refresher

@ikuamike

HTTP Response Message Format

HTTP Version, Response code​​
Zero or more header lines​​
Blank line​​
Optional Message Body​​

HTTP/1.1 200 OK​​
Server: Apache/2.4.7​​
Content-Length: 1150​​
Content-Type: text/html​​

HTTP Basics Refresher

@ikuamike

HTTP Response Codes

2** (success) - The request was successfully received, understood
and accepted.​​
3** (redirection) - Further action needs to be taken in order to
complete the request.
4** (client error) - The request contains bad syntax or cannot be
fulfilled.
5** (server error) - The server failed to fulfill an apparently
valid request.

Career Relevance

@ikuamike

Application Security Engineer
Bug Bounty Hunter
Pentester
Web Developer

1.
2.
3.
4.

Mobile Application Security
Introduction

When it comes to mobile apps we mainly think of two mobile
platforms; android and ios.

For today, I'll focus on android.

@ikuamike

Android Application CTF Challenge

@ikuamike

https://github.com/sajjadium/ctf-
archives/blob/main/HacktivityCon/2021/mobile/To_Do/todo.apk

Tools
apktool
jadx-gui

Android Application Structure

@ikuamike

Android apps come with an extension of .apk which is Android
PacKage. This APK is just a zip file with assets and compiled
code. Typically it looks like this when you unzip:

myapp.apk
├── AndroidManifest.xml
├── META-INF/
├── classes.dex
├── lib/
├── res/
└── resources.arsc

Android Application Structure

@ikuamike

AndroidManifest.xml
This is a compressed version of the AndroidManifest.xml file which
contains all of the basic application information such as the
package name, package version, externally accessibly activities
and services, minimum device version, and more. The compressed
version of this file is not humanly readable, but there are a
couple of tools that are able to decompress it, most notably being
apktool.

Android Application Structure

@ikuamike

META-INF/
The META-INF/ folder is essentially a manifest of metadata
information including the developer certificate and checksums for
all the files contained within an APK. If you were to try and make
changes to an APK without removing and re-signing this folder, you
would get an error when installing the modified version.

Android Application Structure

@ikuamike

classes.dex
The classes.dex file (sometimes there are multiple) contains all
the compiled bytecode of an Android application. This is what is
decompiled into Java source files.

Android Application Structure

@ikuamike

resources.arsc
The resources.arsc file contains metadata about the resources and
the XML nodes of the compiled resource files like XML layout
files, drawables, strings, and more. It also contains information
about their attributes (like width, position, etc) and the
resource IDs, which are used globally by both Java and XML app
files in the app. This file is compressed into a binary form that
is read into memory during runtime. Apktool can also decompress
these files and output them into a humanly-readable format for you
to explore.

Android Application Structure

@ikuamike

res/
The “res” folder contains compressed binary XML versions of the
resource XML files that are paired with the resources.arsc file
during runtime to read images, translations, etc. These XML files
are in the same binary format as the AndroidManifest.xml file and
can be easily decoded with apktool.

Android Application Structure

@ikuamike

lib/
Not all Android apps contain a lib/ folder, but any app with
native C++ libraries will. Within this folder, you will find
different folders per-architecture, each one containing .so files
specifically compiled for that target architecture such as
“armeabi-v7a” and “x86”. This is also why you cannot install an
app on an x86 device without it providing x86-compiled libs
(Google for “INSTALL_FAILED_NO_MATCHING_ABIS”).

Android Application Structure

@ikuamike

assets/
Any other files that may be needed by the app appear here.
Additional native libraries or DEX files may be included here.
This can happen especially when malware authors want to try and
“hide” additional code, native or Dalvik, by not including it in
the default locations.

Career Relevance

@ikuamike

Bug Bounty Hunter
Penetration Tester
Application Security Engineer
Mobile Developer

1.
2.
3.
4.

Forensics

@k0imet_

Steganography

@k0imet_

Binary Exploitation

ROPemporium ret2win -
https://ropemporium.com/challenge/ret2win.html

Ghidra
pwntools
gdb

Practical Session

Tools

@trevorsaudi

What Is Binary Exploitation

In a CTF context, binary exploitation involves finding
vulnerabilities such as buffer overflows, heap overflows, format
string bugs in programs and exploiting them in order to get your
flag.
Most commonly, these vulns result in an RCE that enables you to
run arbitrary command on the remote server
In CTF context, we are provided a binary file, known as ELF
(executable and linkable format)
Mostly known as Pwn category in challenges
Career : malware analyst, bug bounty, network security,
application security @trevorsaudi

Reverse Engineering

The goal involves understanding the functionality of a given
program by decompiling or disassembling the binary and making
sense of the output
Career: similar to binex

Introduction

@trevorsaudi

Buffer Overflows

The most basic forms of binary exploitation take place in the
stack
Buffers are temporary memory regions that temporarily store
data during memory operations
A buffer overflow vuln is one where the volume data being
supplied in the buffer exceeds the storage capacity of the
buffer
This causes the program to write to adjacent memory locations
causing crashes

@trevorsaudi

Buffer Overflows

@trevorsaudi

Impact of the BOF attack

By overwriting the memory of an application, we can hijack the
execution flow of a program and possibly send malicious
instructions to the program
In the context of CTFs, our goals usually are:

1. Jump to a function defined in memory which gives us a shell
(ret2win)
2. Use ROP to get our own shell in the server

We have stack-based BOFs and Heap-based ones

@trevorsaudi

Impact of the BOF attack

Stack is more common, leverages stack memory which exists
during execution of a function
Heap is harder to exploit and involves flooding the memory
space allocated for a program beyond memory used for current
runtime operations
The common languages involved which are more vulnerable are C
and C++ since they lack safeguards

@trevorsaudi

How the stack works

The stack is a region of computer memory that stores temporary
variables created by a function
It is a LIFO (last in first out) data structure and uses
principles such as push and pop
Push - adds an element to the stack
Pop - removes the last element that was added
It grows backwards into memory

@trevorsaudi

Registers used in the stack

The base pointer marks the address of start of a function’s
stack frame(area managed by that function) while the
instruction pointer marks the address of the next instruction
to be executed in memory

EBP - base pointer
EIP - instruction pointer

@trevorsaudi

Registers used in the stack

@trevorsaudi

Registers used in the stack

When we run this code, it takes an argument from the command
line and copies to a local stack variable c
The code works well only if you supply input less than 12
characters. (11 characters and below)
The program stack looks as follows
Variables get loaded first
Then we have the frame pointer, essentially the EBP which is
the address of the current instruction being executed

@trevorsaudi

Registers used in the stack

Then the return address is where the stack will return to
after executing this function

@trevorsaudi

Registers used in the stack

@trevorsaudi

Registers used in the stack

@trevorsaudi

Endianness

Endianness is the order or sequence of bytes in computer
memory
Expressed as big-endian or little-endian
Bigf endian stores the most significant byte first while
little endian stores the least significant value first
(reversed order of bytes)
Eg 0xdeadbeef will be represented as 0xefbeadde in little
endian format

@trevorsaudi

ret2win

This is the most basic binex challenge
It involves a binary where there is a win function , and once
you direct execution flow to that function you complete the
challenge and get the flag
To successfully exploit this, you will need to overwrite the
EIP(32-bit) or RIP(64-bit), with a specific value (normally
little-endian version of the return function’s address)

@trevorsaudi

Summary solution

Study the reversed binary using tools like ghidra to
understand how the program works - if source is provided use
that instead
Fuzzing - supply large input to the program till it crashes
Find the offset - at what point does the input crash the
program (EIP)
Find the win function address
Put together a script and get your flag

@trevorsaudi

Summary solution

https://gist.github.com/trevorsaudi/3cfa6f4037dd6a1e684416b1f2
e94aef

Snippet solution script

@trevorsaudi

References & Resources

https://ir0nstone.gitbook.io/notes/types/stack/ret2win
https://en.wikipedia.org/wiki/Stack_buffer_overflow
https://github.com/Zeyad-Azima/Offensive-Resources#exploit-
development
https://github.com/r0hi7/BinExp

@trevorsaudi

https://ir0nstone.gitbook.io/notes/types/stack/ret2win
https://en.wikipedia.org/wiki/Stack_buffer_overflow
https://github.com/Zeyad-Azima/Offensive-Resources#exploit-development
https://github.com/r0hi7/BinExp

Wargames to practice on

ROPemporium
Protostar
Picogym
Pwnable.kr
Pwnable.tw
Pwnable.xyz

@trevorsaudi

https://ir0nstone.gitbook.io/notes/types/stack/ret2win
https://ir0nstone.gitbook.io/notes/types/stack/ret2win
https://ir0nstone.gitbook.io/notes/types/stack/ret2win
https://ir0nstone.gitbook.io/notes/types/stack/ret2win
https://ir0nstone.gitbook.io/notes/types/stack/ret2win
https://ir0nstone.gitbook.io/notes/types/stack/ret2win

